PAGE: 1

PRINT DATE: 06/08/90

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CRITICAL HARDWARE

NUMBER: MO-AA1-420-X

\$050250L ATTACHMENT -Page 15 of 152

SUBSYSTEM NAME: STABILIZED PAYLOAD DEPLOYMENT SYSTEM

REVISION: 2 06/08/90

		PART NAME VENDOR NAME	PART NUMBER VENDOR NUMBER
ASSEM	:	MID MCA-1	V070-764610
ASSEM	ï	MID MCA-2	V070-764620
ASSEM	:	MID MCA-3	V070-764630
M322A	;	MID MCA-4	V070-764640
SRU	:	RELAY, HYBRID	HC455-0135-0001
SRU	:	RELAY, HYBRID	MC455-0135-0002
		PART DATA	

EXTENDED DESCRIPTION OF PART UNDER AMALYSIS:

REFERENCE DESIGNATORS: 40V76A117 - K37

: 40Y76A117 - K53 : 40Y76A118 - K20 : 40Y76A119 - K44 : 40Y76A119 - K56

40V76A120 - K66

QUANTITY OF LIKE ITEMS: 6

FUNCTION:

K37, K66 PROVIDE CONTROL OF AC POWER APPLICATION TO DRIVE MOTOR FOR THE REBERTH FUNCTION. K37, K66 FOR SYSTEM 1/PRIMARY PEDESTAL. K20, K56 FOR SYSTEM 2/PRIMARY PEDESTAL. K53 AND K44 PERFORM THE SAME FUNCTION FOR THE SECONDARY PEDESTAL.

DETAIL DISCUSSION OF THE REBERTH OPERATIONS ARE INCLUDED IN THE FRONT SECTION OF REPORT STS87-0120. FOR THIS REBERTH OPERATIONAL MODE TO BE NECESSARY, EARLIER FAILURES WILL HAVE OCCURRED. AN UNSUCCESSFUL DEPLOYMENT OF PAYLOAD REQUIRES THE USAGE OF THE REBERTH RELAYS.

\$050230L ATTACHMENT -FAILURE MODES EFFECTS AMALYSIS (FMEA) -- CRITICAL FAILURE MODE Page 16 of 152 NUMBER: MO-AA1-420-03 2 06/08/90 REVISION# SUBSYSTEM: STABILIZED PAYLDAD DEPLOYMENT SYSTEM CRITICALITY OF THIS FAILURE MODE: 2R3 ITEM MAME: RELAY, HYBRID # FAILURE MODE: SHORTED. ANY SINGLE SET OF CONTACTS. MISSION PHASE: ON-ORBIT 00 VEHICLE/PAYLDAD/KIT EFFECTIVITY: 102 COLUMBIA : 103 DISCOVERY ATLANTIS 104 105 ENDEAVOUR E CAUSE: PIECE PART STRUCTURAL FAILURE, CONTAMINATION, VIBRATION, MECHANICAL SHOCK, THERMAL STRESS, PROCESSING ANOMALY CRITICALITY 1/1 DURING INTACT ABORT ONLY? NO ■ REDUNDANCY SCREEN A) PASS ■ B) FAIL C) PASS PASS/FAIL RATIONALE: PRELAUNCH CHECKOUT. THE PHASE WILL NOT CAUSE MOTOR TO DRIVE. CANNOT CONFIRM RELAY FAILURE. SEPARATION OF REDUNDANT ELEMENTS (A) SUBSYSTEM: ONE AC POWER PHASE WILL BE CONTINUOUSLY APPLIED TO THE ASSOCIATED DRIVE MOTOR. WHENEVER THREE PHASE AC POWER IS PRESENT.

PAGE: 7

PRINT GATE: 05/08/90

PAGE: 8

PRINT DATE: 06/15/90 8050250L

ATTACHMENT -Page 17 of 152

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CRITICAL FAILURE MODE NUMBER: MO-AA1-420-03

■ (B) INTERFACING SUBSYSTEM(S):
THE DRIVE MOTOR COULD OVERHEAT AND FAIL. A FAILED MOTOR WOULD CAUSE A
PEDESTAL FUNCTION TO BE AT HALF SPEED. IF THE RELAY FOR OPPOSITE MOTOR
ROTATION IS ACTIVATED CIRCUIT BREAKER COULD TRIP.

- (C) MISSION: NO EFFECT. FIRST FAILURE
- (D) CREW. VEHICLE, AND ELEMENT(S): FIRST FAILURE - NO EFFECT.
- (E) FUNCTIONAL CRITICALITY EFFECTS:
 LOSS OF BOTH RELAYS IN THIS MODE WOULD PREVENT DEPLOYMENT USING PRIMARY
 PEDESTAL AND REQUIRING A TRANSFER TO THE SECONDARY PEDESTAL. LOSS OF
 SECONDARY PEDESTAL DRIVE CAPABILITY RESULTS IN INABILITY TO DEPLOY
 PAYLOAD.

- DISPOSITION RATIONALE -

- (A) DESIGN: REFER TO APPENDIX C. ITEM 1.
- (B) TEST: REFER TO APPENDIX C. ITEM 1.

OMRSD: GROUND TURNAROUND;
FREQUENCY OF CHECKOUT IS MISSION DEPENDENT. * 3-PHASE AC MOTOR CIRCUITS
VERIFY PROPER PHASE ROTATION AND MOTOR PHASE VOLTAGE.
S0790A.250-A, -C
S0790A.260-A, -C
S0790A.270-B
S0790A.280-B

- (C) INSPECTION: REFER TO APPENDIX C. ITEM 1.
- (D) FAILURE HISTORY: REFER TO APPENDIX C. ITEM 1.
- (E) OPERATIONAL USE:
 FAILURE OF BOTH PRIMARY PEDESTAL MOTORS WOULD RESULT IN NEED FOR
 PEDESTAL DRIVE TRANSFER TO SECONDARY PEDESTAL.

505025DL ATTACHMENT . Page 18 of 152

PAGE:

PRINT DATE: 06/08/90

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CRITICAL FAILURE MODE NUMBER: MO-AA1-420-03 RELIABILITY ENGINEERING: W. R. MARLOWE 6 DESIGN ENGINEERING : T. TAUFER QUALITY ENGINEERING M. F. MERGEN MASA RELIABILITY MASA SUBSYSTEM MANAGER : NASA EPO&C RELIABILITY : WOODARD 9/18/9. MASA QUALITY ASSURANCE : MASA EPD&C SUBSYS MGR :